Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.
drug_cos.csv, health_cos.csv into R and assign to the variables drug_cos and health_cos, respectivelydrug_cos <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read_csv("https://estanny.com/static/week6/health_cos.csv")
glimpse to get a glimpse of the data.drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoe…
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New…
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.36…
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.66…
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.16…
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.32…
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.48…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018…
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000,…
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000,…
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 364…
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 339…
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000,…
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000,…
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, …
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dr…
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos select(in this order): ticker, year, grossmargin
drug_subsetFor health_cos select(in this order): ticker, year, revenue, gp, industry
health_subsetdrug_subset <- drug_cos %>%
select(ticker, year, grossmargin) %>%
filter(year == 2018)
health_subset <- health_cos %>%
select(ticker, year, revenue, gp, industry) %>%
filter(year == 2018)
drug_subset join with columns in health_subsetdrug_subset %>% left_join(health_subset)
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5.82e 9 3.91e 9 Drug Manufacturers - …
2 PRGO 2018 0.387 4.73e 9 1.83e 9 Drug Manufacturers - …
3 PFE 2018 0.79 5.36e10 4.24e10 Drug Manufacturers - …
4 MYL 2018 0.35 1.14e10 4.00e 9 Drug Manufacturers - …
5 MRK 2018 0.681 4.23e10 2.88e10 Drug Manufacturers - …
6 LLY 2018 0.738 2.46e10 1.81e10 Drug Manufacturers - …
7 JNJ 2018 0.668 8.16e10 5.45e10 Drug Manufacturers - …
8 GILD 2018 0.781 2.21e10 1.73e10 Drug Manufacturers - …
9 BMY 2018 0.71 2.26e10 1.60e10 Drug Manufacturers - …
10 BIIB 2018 0.865 1.35e10 1.16e10 Drug Manufacturers - …
11 AMGN 2018 0.827 2.37e10 1.96e10 Drug Manufacturers - …
12 AGN 2018 0.861 1.58e10 1.36e10 Drug Manufacturers - …
13 ABBV 2018 0.764 3.28e10 2.50e10 Drug Manufacturers - …
drug_cosdrug_cosdrug_cos_subsetdrug_cos_subset <- drug_cos %>%
filter(ticker == "MYL")
drug_cos_subsetdrug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MYL Myla… United … 0.245 0.418 0.088 0.161 0.146
2 MYL Myla… United … 0.244 0.428 0.094 0.163 0.184
3 MYL Myla… United … 0.228 0.44 0.09 0.153 0.209
4 MYL Myla… United … 0.242 0.457 0.12 0.169 0.283
5 MYL Myla… United … 0.243 0.447 0.09 0.133 0.089
6 MYL Myla… United … 0.19 0.424 0.043 0.052 0.044
7 MYL Myla… United … 0.272 0.402 0.058 0.121 0.054
8 MYL Myla… United … 0.258 0.35 0.031 0.074 0.028
# … with 1 more variable: year <dbl>
left_join to combine the rows and columns of drug_cos_subset with the columns of health_coscombo_dfcombo_df <- drug_cos_subset %>%
left_join(health_cos)
combo_dfcombo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MYL Myla… United … 0.245 0.418 0.088 0.161 0.146
2 MYL Myla… United … 0.244 0.428 0.094 0.163 0.184
3 MYL Myla… United … 0.228 0.44 0.09 0.153 0.209
4 MYL Myla… United … 0.242 0.457 0.12 0.169 0.283
5 MYL Myla… United … 0.243 0.447 0.09 0.133 0.089
6 MYL Myla… United … 0.19 0.424 0.043 0.052 0.044
7 MYL Myla… United … 0.272 0.402 0.058 0.121 0.054
8 MYL Myla… United … 0.258 0.35 0.031 0.074 0.028
# … with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
ticker, name, location, and industry are the same for all the observations.co_nameco_name <- combo_df %>%
distinct(name) %>%
pull()
co_locationco_location <- combo_df %>%
distinct(location) %>%
pull()
co_industry group.co_industry <- combo_df %>%
distinct(industry) %>%
pull()
Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Mylan NV is located in United Kingdom and is a member of the Drug Manufacturers - Specialty & Generic industry group.
combo_dfyear, grossmargin, netmargin, revenue, gp, netincomecombo_df_subsetcombo_df_subset <- combo_df %>%
select(year, grossmargin, netmargin, revenue, gp, netincome)
combo_df_subsetcombo_df_subset
# A tibble: 8 x 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.418 0.088 6129825000 2563364000 536810000
2 2012 0.428 0.094 6796100000 2908300000 640900000
3 2013 0.44 0.09 6909100000 3040300000 623700000
4 2014 0.457 0.12 7719600000 3528000000 929400000
5 2015 0.447 0.09 9429300000 4216100000 847600000
6 2016 0.424 0.043 11076900000 4697000000 480000000
7 2017 0.402 0.058 11907700000 4783100000 696000000
8 2018 0.35 0.031 11433900000 4001600000 352500000
create the variable grosmargin_check to compare with the variable grossmargin They should be equal.
grossmargin_check = gp / revenuecreate the variable close_enough to check that the absolute value of the difference between grossmargin_check and gross_margin is less than .001
combo_df_subset %>%
mutate(grossmargin_check = gp / revenue,
close_enough = abs(grossmargin_check - grossmargin) < .001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.418 0.088 6.13e 9 2.56e9 536810000
2 2012 0.428 0.094 6.80e 9 2.91e9 640900000
3 2013 0.44 0.09 6.91e 9 3.04e9 623700000
4 2014 0.457 0.12 7.72e 9 3.53e9 929400000
5 2015 0.447 0.09 9.43e 9 4.22e9 847600000
6 2016 0.424 0.043 1.11e10 4.70e9 480000000
7 2017 0.402 0.058 1.19e10 4.78e9 696000000
8 2018 0.35 0.031 1.14e10 4.00e9 352500000
# … with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
netmargin_check to compare with the variable netmargin. They should be equal.close_enough to check that the absolute value of the difference between netmargin_check and netmargin is less than .001.combo_df_subset %>%
mutate(netmargin_check = netincome / revenue,
close_enough = abs(netmargin_check - netmargin) < .001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome netmargin_check
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.418 0.088 6.13e 9 2.56e9 536810000 0.0876
2 2012 0.428 0.094 6.80e 9 2.91e9 640900000 0.0943
3 2013 0.44 0.09 6.91e 9 3.04e9 623700000 0.0903
4 2014 0.457 0.12 7.72e 9 3.53e9 929400000 0.120
5 2015 0.447 0.09 9.43e 9 4.22e9 847600000 0.0899
6 2016 0.424 0.043 1.11e10 4.70e9 480000000 0.0433
7 2017 0.402 0.058 1.19e10 4.78e9 696000000 0.0584
8 2018 0.35 0.031 1.14e10 4.00e9 352500000 0.0308
# … with 1 more variable: close_enough <lgl>
fill in the blanks
put the command you see in the Rchuncks in the Rmd file for this quiz.
use the health_cos data
for each industry calculate
health_cos %>%
group_by(industry) %>%
summarise(mean_grossmargin_percent = mean(gp/revenue) * 100,
median_grossmargin_percent = median (gp/revenue) * 100,
min_grossmargin_percent = min(gp/revenue) * 100,
max_grossmargin_percent = max(gp/revenue) * 100)
# A tibble: 9 x 5
industry mean_grossmargi… median_grossmar… min_grossmargin…
* <chr> <dbl> <dbl> <dbl>
1 Biotech… 92.5 92.7 81.7
2 Diagnos… 50.5 52.7 28.0
3 Drug Ma… 75.4 76.4 36.8
4 Drug Ma… 47.9 42.6 34.3
5 Healthc… 20.5 19.6 10.0
6 Medical… 55.9 37.4 28.1
7 Medical… 70.8 72.0 53.2
8 Medical… 10.4 5.38 2.49
9 Medical… 53.9 52.8 40.5
# … with 1 more variable: max_grossmargin_percent <dbl>
mean_grossmargin_percent for the industry Medical Devices is 70.8% median_grossmargin_percent for the industry Medical Devices is 72.0% min_grossmargin_percent for the industry Medical Devices is 53.2% max_grossmargin_percent for the industry Medical Devices is 72.5%
health_cos datahealth_cos and assign to the variable health_cos_subsethealth_cos_subset <- health_cos %>%
filter(ticker == "ZTS")
health_cos_subsethealth_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ZTS Zoet… 4.23e9 2.58e9 4.27e8 2.45e8 5.71e 9 1975000000
2 ZTS Zoet… 4.34e9 2.77e9 4.09e8 4.36e8 6.26e 9 2221000000
3 ZTS Zoet… 4.56e9 2.89e9 3.99e8 5.04e8 6.56e 9 5596000000
4 ZTS Zoet… 4.78e9 3.07e9 3.96e8 5.83e8 6.59e 9 5251000000
5 ZTS Zoet… 4.76e9 3.03e9 3.64e8 3.39e8 7.91e 9 6822000000
6 ZTS Zoet… 4.89e9 3.22e9 3.76e8 8.21e8 7.65e 9 6150000000
7 ZTS Zoet… 5.31e9 3.53e9 3.82e8 8.64e8 8.59e 9 6800000000
8 ZTS Zoet… 5.82e9 3.91e9 4.32e8 1.43e9 1.08e10 8592000000
# … with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
?distinct. Go to the help pane to see what distinct does?pull. Go to the help pane to see what pull does.Run the code below
health_cos_subset %>%
distinct(name) %>%
pull(name)
[1] "Zoetis Inc"
co_nameco_name <- health_cos_subset %>%
distinct(name) %>%
pull(name)
** You can take output from your code and include it in your text.**
co_nameIn the following chuck - assign the companys industry group to the variable co_industry
co_industry <- health_cos_subset %>%
distinct(industry) %>%
pull()
Zoetis Inc is in the Drug Manufacturing group.
This is outside the Rchunck. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Zoetis Inc is a member of the Drug Manufacturers - Specialty & Generic group.
dfglimpse to glimpse the data for the plots.df %>% glimpse()
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Dru…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879,…
use ggplot to initialize the chart
data is df
the variable industry is mapped to the x-axis
med_rnd_revthe variable med_rnd_rev is mapped to the y-axis
add a bar chart using geom_col
use scale_y_continuous to label the y-axis with percent
use coord_flip() to flip the coordinates
use labs to add title, subtitle and remove x and y-axis
use theme_ipsum() from the hrbrthemes package to improve the theme
ggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev),
y= med_rnd_rev
)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x = NULL, y = NULL) +
theme_ipsum()

ggsave(filename = "preview.png",
path = here::here("_posts", "2021-03-11-joining-data"))
start with the data df
use arrange to reorder med_rnd_rev
use e_charts to initialize a chart
industry is mapped to the x-axisadd a bar chart using e_bar with the values of med_rnd_rev
use `e_flip_coords() to flip the coordinates
use e_title to add the title and the subtitle
use e_legend to remove the legends
use e_x_axis to change format of the labels on the x-axis to percent
use e_y_axis to remove labels on y-axis
use e_theme to change the theme. here
df %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry,
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)
) %>%
e_y_axis(
show = FALSE
) %>%
e_theme("sakura")